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The steady excitation by a piston radiator of normal modes in a plane acoustic waveguide with absolutely rigid side walls is 
investigated. The radiator, which has mass, is elastically coupled to a rigid screen and is placed at its centre, and the screen is 
situated at the centre of an absolutely soft end-wail of a semi-infinite waveguide. The Wiener-Hopf-Pock method is used to 
construct a solution of the problem for the case when the screen half covers the end-wall of the waveguide, while the dimensions 
of the radiator are arbitrary. The amplitudes of the normal modes and the acoustic fields excited by the radiator in the waveguide 
are investigated analytically and numerically. Q 1997 Elsevier Science Ltd. All rights reserved. 

Problems of the diffraction of electromagnetic normal modes by a transverse strip, which is a tied 
absolutely soft or rigid screen filling half the cross-section of a waveguide, were solved previously in 
P-4. 

1. FORMULATION OF THE PROBLEM 
The arrangement of the piston radiator in a semi-infinite plane waveguide and the choice of the system 

of coordinates are shown in Fig. 1. The thick line represents the walls of the waveguide and parts of 
the end wall, which are a rigid screen S. The horizontal hatched sections represent the absolutely soft 
part of the end wall of the waveguide. The piston radiator P is represented by the inclined-hatched 
section, which is placed in the rigid screen in the section x = 0, -h c y G h. The screen occupies the 
sectionx = 0, h G ly 1 G H/2. 

The complex amplitude P(x, y) of the acoustic pressure in an ideal compressible fluid filling the 
waveguide in the region 0 < x -z + 00, -H c y < H satisfies the homogeneous Hehnholtz equation 

(A+k*)P(x,y)=O, k=wlc (1-l) 

where k is the wave number, c is the velocity of sound in the acoustic medium and o is the angular 
frequency. The factor exp(iot), which specifies the harmonic time dependence of the wave and 
oscillatory processes, is omitted everywhere. 

On the side walls of the waveguide, the following homogeneous Neumann boundary condition is 
satisfied 

aPlay(x,+H)=O (l-2) 

Oscillations are excited in the medium by a time-harmonic force with amplitude F, which acts on the 
piston radiator. We will denote byA the value of the equivalent pressure which exerts this force on the 
radiator, A = FDh. 

The radiator has a mass M and is attached to an elastic spring of stiffness N. The equation of motion 
of the piston, taking into account the contact with the acoustic medium, can be written in the 
form 

(N-MW2)U=--j P(O,y)dy+F 
-h 

(l-3) 

where U is the amplitude of the displacement of the radiator from the equilibrium position. 
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Fig. 1. 

The condition for the radiator displacement and the normal component of the displacement vector 
of the liquid close to it to be equal has the form 

p&l = ~(O,Y), -hsyah 

where p is the density of the acoustic medium. 
On the part of the end wall of the waveguide free from the radiator, the homogeneous Neumann 

boundary condition is satisfied for the rigid fixed screen, while for the soft part of the end wall the 
homogeneous Dirichlet boundary condition 

~~O,y)=O. h4yl+ P(O,y)=O, +lyls H 

is satisfied. 
The acoustic field satisfies the limiting-absorption principle. The Meixner condition is satisfied in 

the neighbourhood of the point where the piston is joined to the rigid screen, and also at the ends of 
the rigid screen and the point where the end of the waveguide is joined to its side walls. 

2. INTEGRAL EQUATIONS 

We will reduce the problem to a system of integral equations. 
We will assume that symmetrical normal modes of the following form propagate from the radiator 

in the waveguide with rigid side walls (taking the symmetry about the waveguide axis into account) 

Q,<x,y)= A k 
%Y” 

cP,(y)exp(jY,x), n=0,1,2,... 

(~,,(y)=cos(q~,y), q,=mlH, yn= J k*-qq,2, eO=2, e,=l, n=1,2... 

The introduction of the factorA, the value of the equivalent pressure of the active force F acting on 
the radiator, in the expression for Q&y) is due to the fact that, in view of the linearity of the problem, 
the amplitudes of the excited normal modes are proportional to this force. 

The normalization of the normal mode is chosen so that all the propagating normal modes Q&r, y) 
(Im y,, = 0 when Im k = 0) transmit through the cross-section of the waveguide the same mean power 
(per period) 

w= I Im 7 Q,(-GY) 7 
2PW -H 

- @i<x.Y) dy= A2H 

WC 
(2.4 
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Taking into account the symmetry of the problem about the waveguide axis, we have that the acoustic 
pressures&y) are even with respect to the variable y. Hence, we will seek a solution only in the upper 
half of the waveguide when y > 0, adding along the ray 0 < x < 00, y = 0 the boundary condition 

$(x.0)=0 (2.3) 

We will seek the acoustic pressure P(x, y) in the upper half of the waveguide for x > 0 in the form 
of expansions in plane waves 

ch(Y(Y - H)) sin(hx) dh. H < 
y sh(yH / 2) 

t --,y- < H 
2 

ch(YY) 
yWHl2) 

cos(hx)dx+p,(x,y), O<yf 

(24 

(2.5) 

Here y = @* - kz), while P+, y) is any particular solution of the Hehnholtz equation in the strip 
IyI<M2and h’h tifi w IC sa s es conditions (1.4) and (1.5), but in other respects is fairly arbitrary. 

Depending on the chosen boundary conditions on the side walls of the strip forx > 0 and y = *H/2, 
there will be different particular solutions P .(x, y). We will choose the solution which satisfies the homo- 
geneous Neumann boundary conditions on these rays. We will seek a particular solution in the form 
of an expansion in normal modes of a waveguide with rigid walls and width N, i.e. corresponding to 
the limiting-absorption principle in the form of modes Q&y), defined by (2.1). In fact, replacing the 
waveguide width H in (2.1) by H/2 is equivalent to doubling the number of normal modes. Hence, we 
have the following representation (everywhere henceforth summation over n or s is from zero to intinity) 

P, (x, y) = uI: a;,QZn (x, y). (u = -iopcu / 4 GW 

To find the required amplitudes of th: normal modes @,, we combine conditions (1.4) and (1.5) in 
the form 

1. IylG h 
(QY), XL(Y) = 

0, h<lyls H/2 

This condition now holds for all 1 y I < H/2. 
By substituting (2.6) into boundary condition (2.7), after cancelling u we have 

(2.7) 

We multiply both sides of (2.8) by the function (P&J) (S = 0, 1, 2, . . .) and integrate the expression 
obtained with respect to the variable y in the section [-H/2, H/2]. Taking into account the orthogonality 
of the functions (p2nb) and %(y) in this section when IZ + s we have 

a;, = d 
-& Q”; G)=2. E, =l for n=1,2,... 

Y2n 

where qti are the coefficients of the expansion of the characteristic function b(v) in a Fourier series 
in the functions (P&J) 

XII(Y) = zz tl2n(PZn(Y) (2.10) 
n 

sin(q2,h), n = 2,4 ,... (2.11) 

Note that in the special case when the radiator completely overlaps the rigid screen (h = H/2), the 
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particular solution has the form 

p,(x,y) = u&(x,y) = ueik (2.12) 

The required quantities in (2.4) and (2.5) are the function@) and the quantity u from (2.6) which 
is proportional to the particular solution P*(x, y). 

To satisfy the Meixner condition in the neighbourhood of the points of the ends of the rigid screen, 
we require the following estimate to be satisfied 

p(X)=O(x-y, IN+-, &>O (2.13) 

Representations (2.4) and (2.5) for the acoustic pressure P(x, y) ensure that the Helmholtz equation 
(1.1) and boundary conditions (1.2) and (1.3) are satisfied. These representations also ensure that the 
conditions on the end wall of the waveguide are satisfied. 

In fact, it follows from (2.4) that the function P(x, y), when H/2 < y < H, is odd with respect to x 
and, consequently, satisfies condition (1.5). The integral term in (2.5) for the pressure P(x, y) is an even 
function of the variable x. Hence, the derivative of this term with respect to x when x = 0 is zero. 
Conditions (1.4) and (1.5) are satisfied automatically in view of the choice of the form of the particular 
solution P.(x, y). 

From the continuity of the acoustic pressure in the waveguide and of they-component of the displace- 
ment vector of the acoustic medium along the ray 0 < x < =~,y = H/2 we have the equations 

Using them, and also representations (2.4) and (2.5), after reduction we obtain two integral equations 
for finding the required function p(h) when x > 0 

=kuC (-1)” 
- tlzn exp(iY2,x) 

n Y2. 

(2.14) 

(2.15) 

+rp(k)e-%=O (2.16) 
-N 

When obtaining Eq. (2.16) we took into account the fact that on the rayx > 0,y = H/2 the particular 
solution P.(x, y), by construction, satisfies the homogeneous Neumann condition, and when obtaining 
the representation for P.(x, H/2) we took into account the relations &(H/‘2) = (-1)” and (p~n+~(H/2) = 0. 

3. THE RIEMANN BOUNDARY-VALUE PROBLEM 

We will reduce the solution of integral equations (2.14) and (2.16) to the solution of the Riemann 
boundary-value problem for analytic functions. 

By the Wiener-Paley theorem [5] using the relation 

exp( igx) = -!- +r eh 
21ci -DD h-P-i0 

dA, x>o 

we conclude from (2.14) and (2.16) that 

P@k(h) = Q+(h) + uf(h), p(h) = W(h) P-1) 

f(V = c f2#tr f2n = 
n 

y2 ;y’;,“21 io) 
n - II 
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where o+(5), Q-(h) are analytic functions in the upper half-plane (Im h > 0) and the lower half-plane 
(Im h < 0) of the complex variable h, respectively. 

According to the estimate (2.13) we have 

a+(h) = O(PE), W(h) = O(P), Ihi-, QD (3.2) 

Eliminating the required function&) from (3.1), we arrive at the inhomogeneous Riemann problem 
161 

~-(h)g(h)=~+(h)+uf(h) (3.3) 
The problem consists of finding two functions Q+(h) and a-(h) from the linear relation (3.3) that 

are satisfied on the real axis of the variable h (Im h = 0). 
The key fact in solving the Riemann problem is the factorization of the function g(L) from (2.15), 

i.e. the representation of this function in the form 

t?(h) = g+@k- (A) (3.4) 

where g+(h), g-(h) are analytic functions in the upper half-plane and lower half-plane of the complex 
variable h, respectively, having no zeros in these half-planes. ‘Itlking into account the fact that g(h) is 
a meromorphic function, we obtain the required representation using the theory of infinite products 
[3, 7,8]. We have 

g+(h) = g-(--v =ipiio (l+&)(l+$)l (3.5) 

Here 

g*w = OWX), IhI-, 00 (3.6) 

Taking representation (3.4) into account we can rewrite Eq. (3.3) in the form 

We also replace the function F(h) = @)/g+(h) in Eq. (3.7) by the sum of functions that are analytic 
in the upper half-plane (F+(h)) and lower half-plane (F(h)) of the variable h, respectively 

F(h) = F+(h)+ F-(h) 

F+(h)=C f2,, F-&)=+2- 
n n g+(Y,“) 

We convert Eq. (3.7) to the form 

W(k)g-(A)-uF-(h)=z+uF+(l) 

(3.8) 

By a theorem on analytic continuation through a contour, the left- and right-hand sides of Eq. (3.9) 
specify a certain unique function Q(h), analytic in the whole complex plane of the variable L. In view 
of estimates (3.2) and (3.6) this function will be identically equal to zero. Consequently, using the second 
relation of (3.1) and the second relation of (3.8), we obtain 

p(h)=LX - f2n 

g-m n g+(Y2d 
(3.10) 
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4. THE ACOUSTIC PRESSURE IN THE WAVEGUIDE 

We will obtain a representation of the acoustic pressure in the waveguide in the form of an expansion 
in normal modes. To do this we will write the integral on the right-hand side of (2.4), taking into account 
expression (3.10) for the ftmctionp(h) in the form 

P(x.y) =+ 
(-u”m,” 

n Y*d?+(Y,,) (In++zd 

I* =&-+- 
I 

ch( r(r - fO)e*& 
n 

dh 

2xi -oo 
(A - Yh - i0) 

(4-l) 

(4.2) 

where here we have simultaneously taken either the upper or lower signs. 
We will evaluate the integrals for I”, and I;; in (4.2) from the theorem of residues, closing the contour 

of integration by a semicircle of infinite radius in the upper and lower half-planes of the variable h, 
respectively, taking (3.1) into account. We will have 

1.’ =(-1)“g+(Y2n)(P2n(Y)exp(iY2nx)- 

-C 2~~1~'+'q2r+1g+~Y2s+1~(P2~,+,~y)~~p(~y2r+~*) 

.v (YZs+l - Y2n )HY2s+I 
ikx 

I,- = 
e 

+I: 
2k(-QS 

g+W(k+yz.W s (Y2n +Y2swY2sg+(Y2,) 
cp2,(y)expW2,x) 

Using (4.1) we now obtain a representation for the acoustic pressure in the form of the required 
expansion in normal modes 

W,y)=uC a,Qn(x,y), a, = 
kE 
n pLn 

n Y” 

rl0 
k c 

(--Vtl2.~ 

cc0 =-?-+ W+(k) s (k+y,,hg+(Y,,) 

7l2n 
P2n =-+ 

2 
(-1)” c (-1Yq2.7 

g+(YzM s (Y2” +Y2s)Y2sg+(Y2.s) 

CL&I =(-l)nq2n-lg+(Y2n-l)C 
Gwl,, 

.F (Y&l -Y2.d~Y2.sg+(Y2.J 
, n=1,2,... 

The coefficients rlti are defined by (2.11). 
In the special case when the radiator completely overlaps the rigid screen (h = H/2), we have 

1 1 

PO = ?i+ 4kH(g+(k))? 

P2” = 
C-1)” 

g+ Wg(y,,, Wz,, + k)H ’ “‘- = 

wn8+(Y*n-l)q2n-I n = 1,2,... 
g+(W2n-, - kW 

We will show that l& are the coefficients of the expansion in a Fourier series of the functions 
s(y) of the displacement of the acoustic medium at the end of the waveguide for unit displacement 
of the piston radiator. In fact, if we calculate the amplitude of the x-component of the displacement 
vector of the acoustic medium on the end wall of the waveguide Uib), we will have, when ly 1 c H, the 
equation 

U,(y)=--= l ap(o*y) ux wP,(y) pw2 ax n 
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To determine u in (4.1) we use the equation of motion of the piston (1.3), which gives 

N-Ma2 
-iwpc 

From (4.5) we will have 

(4.6) 

4l 
pee kH 

= L%P, 
2y,h 

Here Z is the input impedance of the piston radiator in the rigid screen, partially covering the end- 
wall of the semi-infinite waveguide. This impedance is equal to the ratio of the equivalent pressure A 
to the value of the complex amplitude of the oscillatory velocity of the radiator V = ioU, ZI is the 
impedance of the radiator in a vacuum, ces is the natural frequency of the radiator in a vacuum, p. is 
the surface density of the radiator and Z,, is the impedance of the interaction between the form of the 
oscillation of the radiator in the rigid screen and the Nth component of the pressure on the piston a&(0, 
y); it is equal to the ratio of the mean pressure which this component exerts on the radiator to the 
oscillatory velocity of the radiator V. 

If the radiator completely overlaps the rigid screen (h = H/2), the equation of motion of the piston 
can be written in the form 

N-hZco2 
-iwpc dk-1) dy+H 

We divide the integral on the right-hand side of (4.7) by the sum of the two terms and change the 
order of integration in the first term. After integration with respect to the variable y we obtain 

Z,u ku += 
I 

dh -=- -uH+H 
PC xi -oo g+(k)@-k-iO)g-@)(A2 -k2) 

We evaluate the integral in the last equation using the theorem of residues, closing the contour of 
integration in the lower half-plane of the variable h. The integrand here has a single simple pole at the 
point h = -k, sinceg-(A) is an analytic function in this half-plane. After integration we obtain the required 
quantity U, for which we obtain an expression, similar to (4.6), except that the total impedance Z is 
calculated from the formula 

z=z*+22,, z,=pcpo (4.8) 

where the coefficient p,, is defined by the first expression of (4.4). 
Comparing (4.8) with the second formula of (4.6), obtained assuming an arbitrary ratio of the dimen- 

sions of the piston and the screen, we have the equation 

z, =q+q+... (4.9) 

which holds when the piston completely overlaps the rigid screen (h = H/2). 
The final expression for the dimensionless amplitude of the nth normal mode, excited by the piston 

radiator in the soft end-wall, is obtained from (4.4), taking into account the value of the amplitude of 
the radiator displacement obtained (4.6). We have 

(4.10) 

The acoustic pressure in the waveguide excited by the piston radiator placed in its end wall, according 
to representation (4.3), taking (4.10) into account, is given by the expression 
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(4.11) 

5. THE RESULTS OF NUMERICAL CALCULATIONS 

The results of calculations obtained using (4.10) and (4.11) are shown in Figs 2-4. In all the calculations we 
assumed that p&H) = Mi(2phH) = l/2. 

1 

0 

-1 

Fig. 2. Fig. 3. 

n 

“2 / 

0 

Fig. 4. 
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Note that the power flux W,, averaged over a period of the oscillations, carried away from the end wall by the 
propagating wave with number n, corresponding to (4.11) can be calculated from the formula W,, = I a,, 12W, where 
W is given by (2.2). The quantity 1 o;, I2 will be called the power excitation coefficient of the nth normal mode. 

In Fig. 2 we show the power excitation coefficient of the normal mode of the piston type I ~6 1’ (the continuous 
curves) as a function of the dimensionless frequency of the exciting force R = Mi. The radiator is situated at the 
centre of the end wall of the waveguide and completely overlaps the rigid screen (h = H/2). The dimensionless 
natural frequency of the piston radiator in a vacuum is R. = e.QZ/c, where Ri is the generation frequency of the 
normal mode Qi(n, y) (Cl, = A). Curves 1 correspond to the value R. = 2.5 < C& and curves 2 correspond to the 
value R. = 4.5 > Q,. The dashed curves correspond to the case when the radiator completely overlaps the waveguide 
cross-section. The parameters of the radiator are chosen so that its impedance in a vacuum is always equal to Z. 

When the radiator completely overlaps the waveguide cross-section, the piston-type wave is the only wave which 
is excited in the waveguide. The acoustic field in the waveguide has the form aQ&y), the total impedance of this 
radiator is calculated from the formula Z’ = Z. + pc, and the amplitude a = d(2)pclZ’. 

The graphs shown in Fig. 2 have a resonance form, which is defined by the frequency-dependence of the 
corresponding total impedances: for I a0 1’ it is Z and for I a I2 it is Z’. Both impedances are complex quanti- 
ties, the real part of which is the resistive component of the impedance and the imaginary part is the reactive 
component. The resistive part of the impedance is related to the energy loss in the oscillating mechanical system 
when it radiates. 

When the radiator completely overlaps the waveguide cross-section, the only excited normal mode of the piston 
type at all frequencies carries away oscillatory energy from the radiator. The interaction impedance of this wave 
with the form of the radiator oscillation is resistive, equal to pc, and is independent of the frequency. At the resonant 
frequency R. the reactive component of the total impedance Z’, which here is equal to the impedance of the radiator 
in a vacuum Z. vanishes, and I a I2 takes its maximum value, equal to two. 

The frequency dependence of the energy excitation coefficient 1 CY.,, f when the screen partially covers the waveguide 
cross-section has a more complex form. All normal modes, propagating and non-propagating, are excited in the 
waveguide. The total impedance of the radiator Z is calculated here using the second formula of (4.6), which, in 
the special case when h = H/2, simplifies and has the form (4.8). All the impedances Z,,, corresponding to the 
interaction of the radiator and the semi-infinite waveguide, are complex quantities. When h = H/2, as was shown 
earlier in (4.9), the total impedance of the interaction of the radiator and all the normal modes, differing from 
the piston mode, is equal to the impedance of its interaction with the piston mode Zs. In Fig. 3 we show the resistive 
component (Re Zo, curve 1) and the reactive component (Im Zs, curve 2) of the impedance Zo as a function of 
the dimensionless frequency R for the case when the radiator completely overlaps the rigid screen. 

To explain the presence of the reactive part of the impedance Z we will consider the problem of the oscillations 
of a radiator in a rigid screen, which partially covers the end wall of the semi-infinite waveguide, as the odd part 
of the problem of an oscillating radiator. The oscillating radiator [9] consists of two in-phase oscillating radiators, 
arranged symmetrically on both sides of a rigid screen. Discussions similar to those for an oscillating radiator [9] 
explain the occurrence of a reactive part of the impedances Z,,. In view of the fact that the screen does not completely 
overlap the waveguide cross-section, it is possible for the medium to transfer from one side of the screen to the 
other, which leads to levelling the acoustic pressures on the different sides of the screen, and the medium far from 
it is not compressed. Over a half-period of the oscillations, the pressure levelling is effective at a distance of half 
a wavelength of the sound from the edge of the radiator. This effect is particularly marked at low frequencies, 
when the dimensions of the radiator do not exceed the wavelength of the acoustic wave in the medium. 

The frequency-dependence of I ac I2 also has a resonance form, with a shift of the resonance frequency R’ < Ri 
with respect to the frequency R.. The value of R’ is given by the ratio of the resistive and reactive components of 
the total impedance Z. 

In Fig. 4 we show the results of calculations of the total acoustic field in the waveguide P&y) = I P(r, y) lexp(icp(x, 
y)) (the function cp(x,y) describes the phase distribution of the pressure field) when h = H/2, CL = 4.5. The frequency 
of the exciting force was chosen so that R = 4. 

The distribution of I P(x, y)/P(O, H/2) I-the modulus of the normalized pressure (isobars) in the waveguide, is 
shown in Fig. 4(a). In Fig. 4(b) we show lines of equal phase of the acoustic pressure in the waveguide (cp(x,y) = 
const). The lines of the power flux, averaged over a period, carried away from the radiator, are shown in Fig. 4(c); 
they are drawn so that the power flux vector, averaged over a period 

W-&y) = IIm( J’(x,y)grad(f’(x,y)) =~lf(x.y)lgradto(x.y)) 
2PW 

at each point of the power streamline is directed along the tangent and is orthogonal to the equiphase lines. 
Points A and B in Fig. 4 are points of zero pressure (Fig. 4a), points where the equiphase lines crowd together 

(Fig. 4b), and points of circulation of the oscillatory energy (Fig. 4~). 

Note that the solution obtained is simultaneously of the problem of a piston radiator in a rigid screen 
filling half the cross-section of an infinite plane waveguide. The radiator is placed at the centre of the 
screen and excites waves on both sides. The radiated field is odd with respect to the waveguide cross- 
section, passing through the screen with the radiator. Taking this symmetry into account, we arrive at 
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the problem of a radiator in a semi-infinite waveguide, considered above. In fact, in the cross-section 
in which the screen is situated, we must, in addition, set up the homogeneous Dirichlet boundary 
condition. 
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